數(shù)控電火花機床之數(shù)控系統(tǒng)的診斷與維修心得探討 隨著電子技術和自動化技術的發(fā)展,數(shù)控技術在電火花機床行業(yè)的應用越來越廣泛。以微處理器為基礎,以大規(guī)模集成電路為標志的數(shù)控設備,已在我國批量生產(chǎn)、大量引進和推廣應用,它們給機械制造業(yè)的發(fā)展創(chuàng)造了條件,并帶來很大的效益。但同時,由于它們的先進性、復雜性和智能化高的特點,在維修理論、技術和手段上都發(fā)生了飛躍的變化。 數(shù)控維修技術不僅是保障正常運行的前提,對數(shù)控技術的發(fā)展和完善也起到了巨大的推動作用,因此,目前它已經(jīng)成為一門專門的學科。 另外任何一臺數(shù)控電火花設備都是一種過程控制設備,這就要求它在實時控制的每一時刻都準確無誤地工作。任何部分的故障與失效,都會使電火花機床停機,從而造成生產(chǎn)停頓。因而對數(shù)控系統(tǒng)這樣原理復雜、結構精密的裝置進行維修就顯得十分必要了。 我們現(xiàn)有的維修狀況和水平,與國外進口設備的設計與制造技術水平還存在很大的差距。造成差距的原因在于:人員素質較差,缺乏數(shù)字測試分析手段,數(shù)域和數(shù)域與頻域綜合方面的測試分析技術等有待提高等等。 下面我們從現(xiàn)代數(shù)控系統(tǒng)的基本構成入手,探討數(shù)控系統(tǒng)的診斷與維修。 數(shù)控系統(tǒng)的構成與特點 目前世界上的數(shù)控系統(tǒng)種類繁多,形式各異,組成結構上都有各自的特點。這些結構特點來源于系統(tǒng)初始設計的基本要求和工程設計的思路。例如對點位控制系統(tǒng)和連續(xù)軌跡控制系統(tǒng)就有截然不同的要求。對于T系統(tǒng)和M系統(tǒng),同樣也有很大的區(qū)別,前者適用于回轉體零件加工,后者適合于異形非回轉體的零件加工。對于不同的生產(chǎn)廠家來說,基于歷史發(fā)展因素以及各自因地而異的復雜因素的影響,在設計思想上也可能各有千秋。例如,美國Dynapath系統(tǒng)采用小板結構,便于板子更換和靈活結合,而日本FANUC系統(tǒng)則趨向大板結構,使之有利于系統(tǒng)工作的可靠性,促使系統(tǒng)的平均*率不斷提高。然而無論哪種系統(tǒng),它們的基本原理和構成是十分相似的。一般整個數(shù)控系統(tǒng)由三大部分組成,即控制系統(tǒng),伺服系統(tǒng)和位置測量系統(tǒng)。控制系統(tǒng)按加工工件程序進行插補運算,發(fā)出控制指令到伺服驅動系統(tǒng);伺服驅動系統(tǒng)將控制指令放大,由伺服電機驅動機械按要求運動;測量系統(tǒng)檢測機械的運動位置或速度,并反饋到控制系統(tǒng),來修正控制指令。這三部分有機結合,組成完整的閉環(huán)控制的數(shù)控系統(tǒng)。 控制系統(tǒng)主要由總線、CPU、電源、存貯器、操作面板和顯示屏、位控單元、可編程序控制器邏輯控制單元以及數(shù)據(jù)輸入/輸出接口等組成。一代的數(shù)控系統(tǒng)還包括一個通訊單元,它可完成CNC、PLC的內部數(shù)據(jù)通訊和外部高次網(wǎng)絡的連接。伺服驅動系統(tǒng)主要包括伺服驅動裝置和電機。位置測量系統(tǒng)主要是采用長光柵或圓光柵的增量式位移編碼器。 數(shù)控系統(tǒng)的主要特點是:可靠性要求高:因為一旦數(shù)控系統(tǒng)發(fā)生故障,即造成巨大經(jīng)濟損失;有較高的環(huán)境適應能力,因為數(shù)控系統(tǒng)一般為工業(yè)控制機,其工作環(huán)境為車間環(huán)境,要求它具有在震動,高溫,潮濕以及各種工業(yè)干擾源的環(huán)境條件下工作的能力;接口電路復雜,數(shù)控系統(tǒng)要與各種數(shù)控設備及外部設備相配套,要隨時處理生產(chǎn)過程中的各種情況,適應設備的各種工藝要求,因而接口電路復雜,而且工作頻繁。 本文由蘇州中航長風數(shù)控科技有限公司整理編輯友情發(fā)布,提供,公司。 |